TP Physique 11

<u>Objectifs :</u>

- Etudier les lois de Kepler à partir des satellites réels autour de la Terre
- Utiliser les ressources présentes sur internet
- Utiliser un tableur pour réaliser des calculs répétitifs

I. Présentation et utilisation des sites internet

1. Connexion aux sites internet

Se connecter aux deux sites suivants dans deux fenêtres différentes (via les favoris):

☞ fenêtre n°1 : ^A <u>http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html</u> ^A

Une fenêtre (une console Java) avec un dessin de la Terre et son équateur apparaît. Après quelques secondes de chargement, des centaines de points lumineux entourent le globe : <u>ce sont les satellites artificiels actuellement</u> <u>en orbite autour de la Terre</u> !

☞ fenêtre n°2 : ^A <u>http://www.fourmilab.ch/earthview/satellite.html</u> ^A

Une fenêtre « View from Satellite » apparaît proposant une liste de centaines de satellites.

2. Intérêt et utilisation de ces deux outils

<u>fenêtre n°1 :</u>

On distingue des satellites regroupés au voisinage de la Terre et d'autres répartis sur une ceinture très éloignée de la Terre (et oui, la Terre a son anneau...). Il est possible d'étudier, dans le référentiel géocentrique, les trajectoires et positions de chacun de ces satellites.

- Agrandir la fenêtre pour visualiser en pleine page et cliquer sur l'onglet « View » puis « Zoom in » ou « Zoom out » pour agrandir ou réduire la vue. Le mode « Orbit Path » doit rester cocher.
- Cliquer sur un point lumineux : la trajectoire du satellite correspondant apparaît dans le référentiel géocentrique.
- Changer de point de vue : cliquer sur la Terre en maintenant la pression.
- Dans l'onglet « Options », choisir le temps pour « rafraîchir » l'image en cliquant sur « Update Rate ». Prendre par exemple « 1/4 second » : image mise à jour toutes les 0,25 s.
- Dans l'onglet « Options », pour accélérer ou ralentir (artificiellement) le mouvement du satellite, cliquer sur « Timing » et choisir « x 1000 » par exemple.
- Dans l'onglet « View », cliquer sur « Satellite Position » pour connaître les données concernant le satellite : altitude, vitesse, période, inclinaison...
- Pour choisir un satellite en particulier, cliquer sur l'onglet « Satellite » puis « Select ». Par exemple, commencer par observer le satellite météorologique *Météosat 7*.
- Cliquer sur l'onglet « Satellite » puis « Center » pour se placer dans le référentiel du satellite et ainsi observer le mouvement relatif de la Terre et des autres satellites. Zoomer plusieurs fois la vue.

<u>fenêtre n°2 :</u>

Une fois que vous avez sélectionné et étudié la trajectoire ainsi que les positions d'un satellite dans la fenêtre n°1, il est possible de visualiser la Terre depuis le satellite dans la fenêtre n°2. Cette observation peut se faire en temps réel mais aussi à différents instants dans le passé (base de données importante).

Choisir Météosat 7 et cliquer sur « View Earth from satellite »

Les informations concernant la position (latitude, longitude et altitude) sont indiqués au dessous de l'observation :

Mettre à 🛛 —	Update							
jour l'image	<i>ur l'image</i> Display: ○ Map, ○ From Sun, ○ From Moon, ○ Night side							
	○ Lat: 0°9' South Long: 0°28' West Alt: 35746 km	Changer de						
	From satellite: METEOSAT-8 (MSG-1) <u>New satellite</u>	— satellite						

Modifier, en bas de page, l'heure de prise de vue : cocher « UTC » au lieu de « Now » et changer l'heure ou de date. Terminer avec la mise à jour de l'image en cliquant sur « Update ».

« Now » ou	Time: <u>Now</u> UTC: 2008-04-08 10:37:26 Julian: 2454564.94266	
« UTC »	Image size: 320 pixels 🔲 No night	Cha
		011

Changer l'heure ou la date

II. Observation de différents types de satellites

Dans la fenêtre n°1, choisir les différents satellites proposés dans le tableau ci-dessous. <u>Pour chacun d'eux</u> :

- Observer leur trajectoire dans le référentiel géocentrique (pour plus de visibilité, choisir d'accélérer le mouvement x1000 ou x100 et mettre la trajectoire dans le plan de l'écran : elle est alors colorée en rouge).
- Compléter le tableau en notant l'inclinaison de chaque trajectoire par rapport au plan équatorial terrestre, les altitudes maximale et minimale (en km) et les vitesses à chacune de ces altitudes (en km/s) ainsi que la période de rotation T (en Heures : Minutes : Secondes).

Dans la fenêtre n°2, choisir les mêmes satellites :

Observer la Terre dans le référentiel du satellite choisi à différentes heures ou dates.

Nom du satellite	Inclinaison	Apogée : Z _{max}	v(z _{max})	Périgée : _{Zmin}	v(z _{min})	Période T	Commentaires
Météosat 7							
Spot 2							
Cobe							
Eutelsat 25A							

- 1. Compléter la dernière colonne par un commentaire judicieux concernant l'orbite de chaque satellite.
- 2. Qu'appelle-t-on satellite géostationnaire ?
- 3. Parmi les satellites étudiés, quels sont ceux qui sont géostationnaires ?
- 4. Qu'ont en commun ces satellites (altitude...)?
- 5. A quoi servent-ils principalement ?

III. Vérification de la troisième loi de Kepler

Vous allez déterminer la période T et le demi grand-axe **a** de 4 satellites ayant des caractéristiques orbitales différentes.

Ouvrir le fichier « lois_de_kepler.xls ». Une feuille de calcul comme celle ci-desous s'ouvre alors :

	A B	C	D	E	F	G	Н	I	J	K	L	M
1	III. Vérific	ation de l	a troisièn	ne loi de	Kepler							
2		. T	2 $4.\pi^{2}$									
3	3ème loi de K	epler : _	$\frac{1}{3} = \frac{1}{C M}$	_			R _T = 6378	km G=	6,67E-11	SI M _T =	5,976E+24	kg
4		a	G.W.	г								
5			$r_{max} + r_{mi}$	•								
6		et a		<u>.</u>								
7			~									
8	Noms	z_max	v(z_max)	z_min	v(z_min)	T (en s)	r_max	r_min	a (en m)	T²/a³	MT_exp	erreur %
9	<u>Météosat</u> 7											
10	Spot 2											
11	Cobe											
12	Eutelsat 25A											

- Reporter les mesures nécessaires dans le tableau de cette feuille en mettant la période T EN SECONDES.
- En déduire, les rayons extremaux r_max et r_min des orbites des satellites.
- Calculer le demi-grand axe a de l'ellipse EN METRES.
- \sim Calculer $\frac{T^2}{a^3}$ en unité SI.
- ^{er} En déduire la valeur expérimentale de la masse de la Terre M_T_exp à partir de la 3^{ème} loi de Kepler
- Comparer à la valeur admise aujourd'hui en calculant l'erreur relative.
- 6. Conclure : la 3è loi de Kepler est-elle vérifiée ?

IV. Vérification de la loi des aires

Après avoir observé toutes ces trajectoires, répondre enfin aux dernières questions :

- 7. Comment la valeur de la vitesse varie-t-elle avec l'altitude ?
- 8. Que constate-t-on en particulier au périgée et à l'apogée ?
- 9. La loi des aires permet-elle de comprendre cette observation ?