http://lefevre.	.pc.free.fr

TP Physique 9

Etude d'un circuit RLC

Objectifs :

- Etude des oscillations libres d'un circuit RLC
- Influence de divers paramètres sur la pseudo-période et sur l'amortissement de ces oscillations
- Etude de l'évolution au cours du temps de l'énergie stockée dans le condensateur et dans la bobine

I. Réalisation du montage et réglages préliminaires

- Mesurer à l'aide d'un ohmmètre la résistance interne r de la bobine d'inductance L=1 H.
- 1.1. Où brancher les voies EAO, EA1 et la masse afin de visualiser U_C sur EAO et U_{BA} sur EA1 ? Compléter le schéma ci-dessous.
- 1.2. Quel est l'intérêt de l'acquisition EA1 ? Ecrire l'expression de U_{BA} en fonction de l'intensité i du courant.

Dans l'ordre, réaliser les opérations suivantes :

- Brancher le voltmètre permettant de mesurer la tension U₀.
- Ajuster la tension (positive) aux bornes du générateur afin de fixer <u>U₀ = 2,0 V</u>.
- Sur le module Orphy GTI2 de raccordement bleu :
 - veiller à ce que dans la partie synchronisation, le bouton « arrêt déclencheur » soit sur la position EFO.
 - placer l'interrupteur inverseur sur la position E₂.
- Réaliser le montage en respectant les polarités indiquées sur le condensateur : on commencera par réaliser le circuit de charge du condensateur puis on réalisera le circuit de décharge dans la bobine et les conducteurs ohmiques.
- Terminer par les branchements nécessaires à l'acquisition : masse 0 V, entrées EAO et EA1.
- **1.3.** Que se passe-t-il quand l'interrupteur K est fermé sur E_1 ?
- 1.4. Que se passe-t-il quand l'interrupteur K est ensuite fermé sur E_2 ?

Appeler le professeur pour vérification du montage (Appel 1)

II. Acquisition de Uc = f(t) dans différents cas et transfert des données vers Regressi

<u>1. Premier cas : acquisition n° 1 avec L = 1 H , C = 10 μ F et R_h = 0 Ω </u>

- Basculer l'interrupteur K en position E₁ (charge du condensateur).
- Ouvrir le logiciel GTS2 2003
- Régler les paramètres d'acquisition :
- <u>Mode d'acquisition :</u> temporel (laisser les autres cases comme elles sont) OK
- <u>Synchronisation</u> : entée front, cocher EFO, pente descend<u>ant, cocher mo</u>nocoup, mode de synchro : front.

-	<u>Balayage</u> :	On	choisira	comme	durée	totale	d'acquisition	Δt =	100 ms	et or	fera	l'acquisition	de N	J = 10)0 points	(<u>ne</u>	pas
	toucher a	ux a	utres pa	ramètre	es qui s	se règle	ent automatic	Juemei	nt)								

-	Paramétrage de la voie d'acquisition :		-		
	entrée analogique : EAO à activer	symbole : Uc	unité : V	minimum : - 2	maximum : + 2
	entrée analogique : EA1 à activer	symbole : UBA	unité : V	minimum : - 0,5	maximum : + 0,5

Basculer l'interrupteur déclencheur K en position E₂ et observer l'acquisition.

Appeler le professeur pour vérification de l'acquisition (Appel 2)

• L'acquisition étant terminée, transférer les mesures vers Regressi.

Faire apparaître à l'écran <u>uniquement</u> la courbe donnant la tension aux bornes du condensateur Uc = f(t).

<u>Remarque</u> : ceci constitue la « page n°1 »

2. Cas suivants : nouvelles acquisitions (n°2 à 8) en faisant varier les paramètres L, C ou R_h

• Étant dans Regressi, pour faire une autre acquisition, vous devez basculer vers le logiciel d'acquisition GTS 2 :

- Régler la nouvelle valeur du paramètre considéré en se référant au tableau ci-dessous et procéder à l'acquisition.
- Celle-ci étant terminée, transférer les données dans une nouvelle page de Regressi.
- Basculer à nouveau vers le logiciel GTS2 pour faire une autre acquisition.
- Recommencer cette procédure autant de fois qu'il y a de valeurs à tester.

1/8

Dans chaque cas, calculer la résistance totale R du circuit et compléter le tableau ci-dessous.

Acquisition n°	1	2	3	4	5	6	7	8
paramètre	R varie							C varie
C (en μF)	10	10	10	10	10	10	10	100
L (en H)	1	1	1	1	1	1	0,5	1
R_{h} (en Ω)	0	200	400	600	800	1000	0	0
R (en Ω)								

- Dans Regressi, créer une nouvelle grandeur « paramètre expérimental », caractéristique de chacune des acquisitions :
- Créer le paramètre capacité C (unité : μF) puis cliquer sur l'onglet « Paramètres » pour entrer les valeurs de C en respectant les valeurs correspondantes pour les 8 acquisitions.
- Procéder de même pour le paramètre inductance L (unité : H).
- Dans la fenêtre « Options », cocher « Calcul avec prise en compte des unités » et « Ajustage automatique des modèles prédéfinis » et décocher les autres.

Appeler le professeur pour vérification des acquisitions (Appel 3)

III. Etude des différents régimes d'amortissement

1. Comparaison des différentes acquisition

- Dans la fenêtre « Graphe », faire défiler les différentes pages acquises, avec les flèches :
- Bien observer les 2 régimes :
 - pour les faibles valeurs de la résistance totale R, le régime est pseudo-périodique (oscillatoire) et au fur et à mesure que R augmente les enveloppes des oscillations se rapprochent de l'axe des temps (amortissement);
 - 📽 pour une certaine valeur de R appelée résistance critique et notée R_c, on change de régime.
 - si R augmente encore, il n'y a plus d'oscillation, la tension est plus longue à tendre vers zéro : c'est le régime apériodique (ou sous-critique).
- Cliquer sur l'icône pour sélectionner les pages de 1 à 6 et décocher 7 et 8. (c'est le paramètre R qui varie) ; valider.
- Imprimer la fenêtre obtenue. Préciser les régimes correspondant à chacune des 6 courbes.

2. Résistance critique d'un circuit RLC

3.1. Déduire des courbes précédentes la valeur approximative de la résistance critique R_{C,exp} qui correspond au passage du régime pseudo-périodique au régime apériodique.

3.2. Comparer la valeur expérimentale trouvée à la valeur théorique : $R_{c,th}$ = 2

3.3. Calculer l'écart relatif qu'il y a entre la valeur expérimentale et la valeur théorique.

IV. Etude du régime pseudo-périodique

1. Pseudo période

- Dans « Graphe », cliquer sur « Coordonnées du graphe »; décocher le mode « superposition de pages » pour pouvoir sélectionner une seule page et cocher « ligne ».
- Faire apparaître à l'écran la **page 1** donnant $U_c = f(t)$, où L = 1 H; $C = 10 \mu F$ et $R_h = 0 \Omega$.
- Cliquer sur l'icône mode d'action du curseur de la souris > réticule.
- Placer les réticules de manière à repérer deux maxima successifs de U_c et en déduire la valeur de la pseudo-période T.
- Ecrire sa valeur dans la colonne du tableau ci-dessous.
- En suivant la même méthode, déterminer T pour la page 7 et la page 8.

Page n°	Paramètres	Pseudo-période T	Période propre T_0	Écart relatif
1	L = 1 H ; C = 10 μ F ; R _h = 0 Ω			
7	L = 0,5 H ; C = 10 μ F ; R _h = 0 Ω			
8	L = 1 H ; C = 100 μ F ; R _h = 0 Ω			

4.1. Dans chaque cas, comparer la valeur de la pseudo-période T avec la valeur de la période propre : $|T_o = 2 \pi \sqrt{L \cdot C}|$

Compléter les deux dernières colonnes du tableau en calculant l'écart relatif entre la pseudo-période T et la période propre T₀. **4.2**. Comment évolue la pseudo-période T avec les valeurs de L et C ?

2. Représentation de la fonction i = f (t) ; Déphasage entre le courant et la tension

- Créer la grandeur i, intensité qui se déduit de la tension aux bornes du conducteur ohmique R₀: i = UBA/10 (voir 1.2.).
- Faire apparaître sur la page 1 les deux courbes U_c = f(t) et i = f(t). Cocher « échelle à droite » pour i = f(t) et « Zéros Y identiques ».
- **4.3**. Les fonctions i(t) et $U_c(t)$ ont-elles une même période ?
- 4.4. Que peut-on dire de la valeur de i lorsque Uc est nulle ?
- **4.5.** Quelle durée sépare deux extrema des courbes $U_c(t)$ et i(t)?

V. Suivi au cours du temps des énergies stockées dans le condensateur et la bobine

1. Création des grandeurs énergies

- Créer la grandeur Ec, énergie électrostatique stockée dans le condensateur qui vaut : Ec = 0,5.C.Uc²
- De même, créer la grandeur Em, énergie magnétique stockée dans la bobine qui vaut : Em = 0,5.L.i²
- Créer enfin la grandeur Etot énergie électromagnétique totale dans le circuit qui vaut : Etot = Ec + Em
- Dans « Graphe », faire apparaître uniquement les courbes Ec = f(t), Em = f(t) et Etot = f(t) avec « échelle à gauche ».

Appeler le professeur pour vérification des courbes (Appel 4)

Imprimer le graphe obtenu pour l'acquisition n°1.

2. Visualisation des transferts énergétiques

Les courbes montrent que les deux énergies Ec et Em évoluent en opposition : l'une est maximale quand l'autre est minimale, et inversement.

- 5.1. Que peut-on en conclure sur les transferts énergétiques réalisés au sein du circuit ?
- **5.2**. Comparer la période d'évolution des énergies Ec et Em à celle des oscillations de la tension Uc.
- 5.3. À quoi peut-on attribuer la décroissance de la fonction Etot?
- Défaire le montage et ranger le matériel sur la paillasse.