oct. 2020

DS n°1

Chap. 1 et 2 - 55'

TSTI2D

Les réponses doivent être justifiées. Les résultats doivent être donnés avec leurs unités. La présentation et l'orthographe sont également appréciées [0,5 pt]. Calculatrice autorisée.

NOM:		Prénom :	
Exercice 1 Cours	[8 pts]		

NOTE:

1. Quelle est la différence entre une pile et un accumulateur ?

/0,5

Comment calcule-t-on l'énergie stockée dans une batterie à partir de sa capacité et de sa tension nominale?
Donner la formule et préciser les unités.

/]

3. Un moteur de 100 W est alimenté par une batterie stockant 500 W·h d'énergie.

a. Sous quelle forme est stockée cette énergie?

/0,5

b. Quelle est la durée de fonctionnement maximale du moteur ?

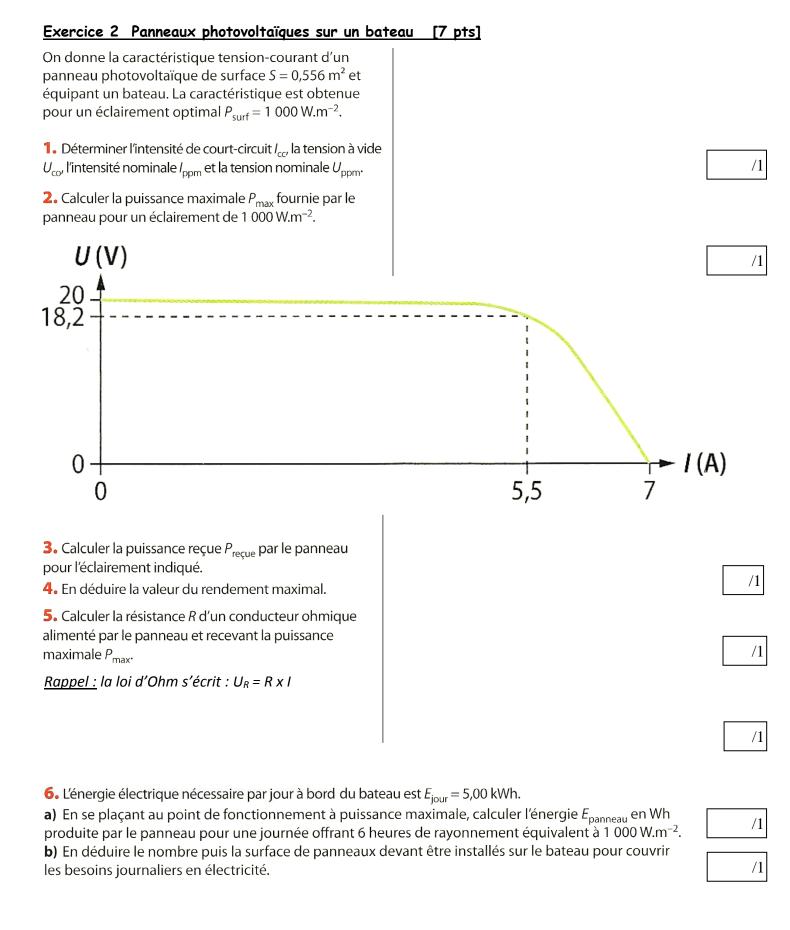
/1

4. Représenter le diagramme énergétique d'un panneau photovoltaïque. Définir le rendement pour ce convertisseur.

/1,5

5. Quel est la constitution d'une cellule solaire photovoltaïque?

/0,5


6. Choisir la ou les bonne(s) réponse(s) :

Données : $1 \text{ eV} = 1,6 \times 10^{-19} \text{ J}$; constante de Planck : $h = 6,63 \times 10^{-34} \text{ J.s}$

- a. La lumière peut être décrite comme :
- □ une onde électromagnétique □ une onde mécanique
- □ un flux de particules appelées photons
- b. L'énergie d'un photon associée à un rayonnement de fréquence f = 2,7×10¹⁴ Hz vaut :
- □ 1,79×10⁻¹⁹ J
- □ 1,11 µm
- □ 1,12 eV
- c. Le spectre de la lumière visible est compris entre ...
- □ 400 et 800 nm
- □ 200 et 400 nm
- □ 400 et 600 nm
- d. Un photon d'énergie 1,3 eV correspond à une onde appartenant...
- □ aux ondes IR
- □ à la lumière visible
- □ aux ondes UV

Ondes radiofréquences	Micro- ondes	Infrarouge	Visibl	e Ultraviolet	Rayons	Rayons γ
Longueur d'onde 1	m	1 mm	800 nm	400 nm	10 nm 1	0 pm

/3

Exercice 3 Batterie pour camping-car [4,5 pts]

La consommation d'un camping-car lorsqu'il est à l'arrêt correspond à l'utilisation de différents appareils. Le tableau ci-dessous dresse le bilan des courants électriques utilisés.

Éléments	Courant (A)		
Chauffage	1,3		
Frigo	0,60		
Pompe à eau	1,5		

Éléments	Courant (A)		
Téléviseur	3,9		
Éclairage	3,8		
Alarme gaz	0,085		

Voici les caractéristiques de deux batteries pour campingcar.

• Batterie 1

 $12 \text{ V} - 80 \text{ Ah} - 330 \times 171 \times 235,5 \text{ mm} - 32,6 \text{ kg}$

• Batterie 2

 $12 \text{ V} - 120 \text{ Ah} - 513 \times 189 \times 223 \text{ mm} - 41,7 \text{ kg}$

Le but de cet exercice est de déterminer quelle est la batterie la plus adaptée à l'utilisation du camping-car pendant une journée.

- a) Quel est le courant maximum l consommé si tous les équipements fonctionnent en même temps ?
- **b)** Pour chacune des batteries, calculer l'énergie disponible *E*.
- c) Calculer le volume V occupé par chacune des batteries.
- **d)** En déduire l'énergie volumique de chacune d'elle. Comparer ces valeurs.
- e) Combien de temps fonctionnerait chaque batterie si on utilisait en continu tous les appareils du camping-car?

/0,5	/1 /1
------	-------