

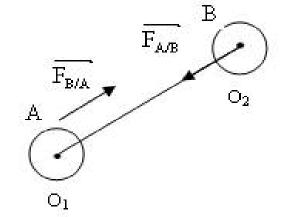
Forces usuelles

Une force modélise une action mécanique exercée sur le système ; elle se représente par un vecteur. Voici quelques exemples courants.

Force d'attraction gravitationnelle

La force gravitationnelle, <u>toujours attractive</u>, est la force exercée par un corps A de masse m_A sur un corps B de masse m_B .

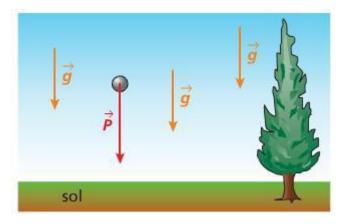
Si tous deux sont à répartition sphérique de masse, ils peuvent être assimilés à un point matériel.


Caractéristiques de l'interaction gravitationnelle :

- ullet Point d'application : B pour $F_{{\mbox{\scriptsize A/B}}}$ et A pour $F_{{\mbox{\scriptsize B/A}}}$
- Direction : celle de la droite AB
- ullet Sens : dirigées vers le centre attracteur : A pour $F_{A/B}$ et B pour $F_{B/A}$
- Valeur : (en N.)

$$F_{A/B} = F_{B/A} = G \frac{m_A m_B}{d^2}$$

Avec


G = 6,67.10⁻¹¹ N.m².kg⁻² constante de gravitation m_A et m_B les masses en kg. d la distance entre A et B en m.

Remarque : Les corps exercent une force de même intensité mais de sens opposé d'où :

$$\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}}$$

Poids d'un corps

Le poids d'un objet de masse m est la force gravitationnelle qu'il subit de par son interaction avec la Terre,

$$\vec{P} = m \vec{g}$$

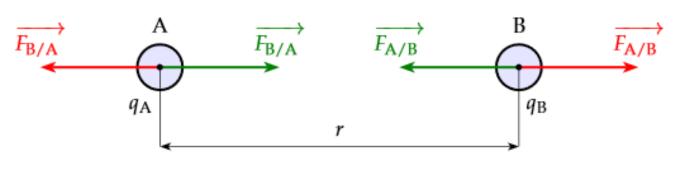
où le vecteur champ de pesanteur *g* caractérise l'attraction de la Terre en chaque point à proximité de sa surface. Le poids d'un objet est vertical, orienté vers le bas et de valeur P = mg.

Remarque:

L'intensité du champ de pesanteur terrestre g dépend de la latitude et de l'altitude. En moyenne, au niveau de la mer, $g = 9.81 \text{ m.s}^{-2}$

<u>Attention</u>: ne pas confondre masse et poids

Masse = caractéristique du système liée à sa composition, en kg. Poids = force d'attraction gravitationnelle dépendant de la masse du système et de l'intensité du champ de pesanteur dans lequel il se trouve, en N (newton).


Force électrique

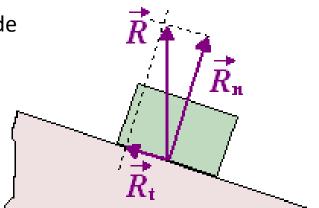
La force électrique, appelée force de Coulomb, modélise l'interaction entre deux objets **portant des charges électriques** \mathbf{q}_{A} **et** \mathbf{q}_{B} , exprimées en coulombs (C). La loi qui rend compte de l'interaction électromagnétique au niveau microscopique est la loi de Coulomb (F en N):

la loi de Coulomb ($F_{\it elec}$ en N.) : $F_{\it elec} = k \, \frac{\left|q_A\right| \left|q_B\right|}{r^2}$

Avec $k = 9,0.10^9 \text{ N.m}^2.\text{C}^{-2}$ la constante de Coulomb q_A et q_B les charges en C. r la distance entre les charges A et B en m.

Les charges q_A et q_B sont de signes opposés : les forces sont attractives. Les charges q_A et q_B sont de signes opposés : les forces sont répulsives.

—
$$q_A \times q_B < 0$$
 attraction — $q_A \times q_B > 0$ répulsion

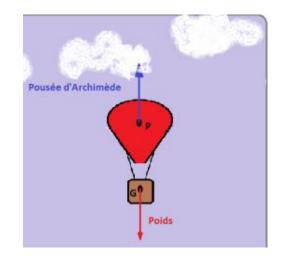

Forces de contact entre solides

La force de contact exercée par un solide sur un système est appelée $\overrightarrow{reaction}$ du support et notée \overrightarrow{R} . Elle est décomposée comme la somme de $\overrightarrow{R_t}$ et $\overrightarrow{R_n}$

• La <u>réaction normale</u> R_n traduit le fait que les solides ne s'interpénètrent pas.

• La <u>réaction tangentielle</u> R_t (encore appelée forces de frottement solide) traduit la résistance du support au mouvement du système.

Exemple avec un objet qui descend un plan incliné →

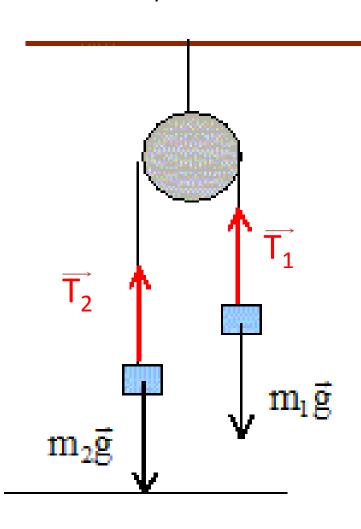


Forces exercées par les fluides

Les forces de contact exercées par un fluide (liquide ou gaz) sur un système sont de deux types :

- La **poussée d'Archimède** correspond au poids de fluide déplacé :
 - elle est verticale et vers le haut
 - elle s'applique au centre du volume immergé dans le fluide
 - sa valeur est : P_a = ρxVxg
 οù ρ est la masse volumique du fluide
 V le volume immergé dans le fluide
 g l'intensité de la pesanteur

Elle est souvent négligée pour des objets lourds dans l'air.



• La <u>force de frottement fluide</u> traduit la résistance du fluide (l'air souvent) au mouvement du système. Cette force est <u>opposée au sens du mouvement</u>, nulle si le système est immobile dans le référentiel du fluide.

Force de tension exercée par un fil tendu inextensible

Cette force est souvent notée T ; sa direction est celle du fil, elle est orientée de l'extrémité en contact avec le système vers l'extrémité opposée du fil.

Exemple de tensions de fils s'exerçant sur une masse m₁ et une masse m₂ reliées par une poulie