CORRIGE					
Structure et transformation de la matière	Activité 9.1	Acides - Bases - Réactions acido-basiques	TS		

1 pH de sucs digestifs

a. Le pH du suc gastrique vaut 1,5 donc $[H_3O^+]_{suc} = 10^{-pH} = 3,2 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$

Dans l'estomac de pH = 3,0, donc $[H_3O^+]_{estomac} = 10^{-3} = 1,0 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$

Le facteur de dilution est $\frac{\left[H_3O^+\right]_{estomac}}{\left[H_3O^+\right]}$ donc de $\frac{1,0\times10^{-3}}{3,2\times10^{-2}} = \frac{1}{32}$. La solution est diluée 32 fois.

b. La valeur du pH permet de déterminer
$$[H_3O^+] = 1,0 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$$
 puis celle en ions HO^- : $[HO^-] = \frac{K_e}{\left[H_3O^+\right]}$, avec $K_e = 10^{-\text{pKe}} = 10^{-13,7}$ donc $[HO^-] = \frac{10^{-13,7}}{1,0 \times 10^{-8}} = 2,0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$.

2 Couples acido-basiques

Acide	Base conjuguée	Ka	pK _a
C ₂ H ₅ CO ₂ H	$C_2H_5CO_2^-$	$1,3\times10^{-5}$	4,9
$C_6H_5NH_3^+$	$C_6H_5NH_2$	$2,5\times10^{-5}$	4,6
NH ₄ ⁺	NH ₃	6,3×10 ⁻¹⁰	9,2
HCO ₂ H	HCO_2^-	1,6×10 ⁻⁴	3,8

4 Science in english

a. On utilise la relation : pH = p K_a + log $\left(\frac{\left[\text{CH}_3\text{CO}_2^-\right]}{\left[\text{CH}_3\text{CO}_2\text{H}\right]}\right)$ = 4,75 + log $\left(\frac{0,175}{0,125}\right)$ = 4,9.

b. L'acide fort ajouté noté HA réagit avec la base CH₃CO₂ selon la réaction d'équation :

$$\text{CH}_3\text{CO}_2^-(\text{aq}) + \text{H}A \text{ (aq)} \rightarrow \text{CH}_3\text{CO}_2\text{H (aq)} + A^-(\text{aq})$$

Cette réaction entraine la consommation de l'ion CH₃CO₂⁻ et la formation de l'acide CH₃CO₂H. La $grandeur \ log \Bigg(\frac{\left \lceil CH_3CO_2^- \right \rceil}{\left \lceil CH_2CO_2H \right \rceil} \Bigg) diminue \ donc \ et \ le \ pH \ diminue.$

La base forte ajoutée noté B réagit avec l'acide CH₃CO₂H selon la réaction d'équation :

$$\text{CH}_3\text{CO}_2\text{H (aq)} + B (\text{aq}) \rightarrow \text{CH}_3\text{CO}_2^-(\text{aq}) + B\text{H}^+(\text{aq})$$

Cette réaction entraine la consommation de l'acide CH₃CO₂H et la formation de l'ion CH₃CO₂-. La grandeur $log \left(\frac{\left[CH_{3}CO_{2}^{-} \right]}{\left[CH_{3}CO_{3}H \right]} \right)$ augmente donc et le pH augmente.

Solution tampon

a. Une solution tampon est une solution dont le pH varie peu suite à l'addition d'une quantité modéré d'acide ou de base ou suite à une dilution modérée.

b. pH = p
$$K_a$$
 + log $\left(\frac{\left[\text{CH}_3\text{CO}_2^-\right]}{\left[\text{CH}_3\text{CO}_2\text{H}\right]}\right)$.

c. Le pH souhaité est supérieur au p K_a , ce qui correspond à une situation où la base est majoritaire. Il faut donc introduire davantage de base.