Temps, mouvement et évolution

TP12A Act. exp.

Suivi temporel d'une synthèse par CCM

TS

<u>Compétences</u> exigibles :

- Savoir déterminer la nature d'un réactif limitant dans une réaction
- Mettre en œuvre une démarche expérimentale pour suivre dans le temps une synthèse organique par estimer la durée

On souhaite réaliser la synthèse d'un ester utilisé en parfumerie : l'éthanoate de benzyle. C'est un ester à l'odeur de jasmin.

répondre directement sur le sujet

Présentation de la synthèse

Intérêt commercial :

L'huile essentielle de jasmin est traditionnellement obtenue par extraction à partir des fleurs de jasmin. Cette huile contient environ 20% d'éthanoate de benzyle (ou acétate de benzyle). L'opération d'extraction est longue et délicate alors que la synthèse de cette espèce chimique est relativement simple à mettre en œuvre.

Protocole de la synthèse :

- Dans un ballon bicol de 250 mL, introduire :
- 7,5 mL de cyclohexane (solvant)
- 5,2 mL d'alcool benzylique
- 14,4 mL d'anhydride éthanoïque
- quelques grains de pierre ponce.
- Thauffer à reflux pendant 45' (thermostat fort).

Données :

Nom	Concentration molaire	Caractéristiques physiques	Pictogrammes	
<i>Réactif 1 :</i> Anhydride éthanoïque	10,4 mol.L ⁻¹	M = 102 g.mol ⁻¹ d = 1,08 ; P = 98 % θ _{eb} = 139 °C soluble dans l'eau et dans le cyclohexane		
<i>Réactif 2 :</i> Alcool benzylique	9,7 mol.L ⁻¹	M = 108 g.mol ⁻¹ d = 1,05 ; P = 99 % Θ _{eb} = 205 °C soluble dans le cyclohexane	<u>(1)</u>	
<i>Produit de synthèse :</i> Ethanoate de benzyle		$M = 150 \text{ g.mol}^{-1}$ d = 1,1 $\theta_{eb} = 212 ^{\circ}C$ soluble dans le cyclohexane	<u>(1)</u>	
<i>Solvant :</i> Cyclohexane		$M = 84 \text{ g.mol}^{-1}$ $d = 0.78$ $\theta_{eb} = 81 ^{\circ}C$ non miscible avec l'eau		

Etude la réaction chimique de la synthèse :

http://lefevre.pc.free.fr

- 🖎 1. Nommer sur la page précédente les réactifs et les produits de la synthèse étudiée.
- \gg 2. Entourer les groupes fonctionnels caractéristiques et les nommer.
- \gg 3. Compléter le tableau d'avancement ci-dessous de la synthèse étudiée sans chercher à calculer la valeur de l'avancement maximal x_{\max} .

Equation de la réaction		C ₆ H ₅ CH ₃ OH _(ℓ)	+ C ₄ H ₆ O _{3(ℓ)} -	$C_6H_5CH_3CO_2CH_{3(\ell)} + CH_3COOH_{(\ell)}$		
Etat du système	Avancement (en mol)	n (alcool)	n (anhydride)	n (ester)	n (acide)	
Etat initial	0					
Etat intermédiaire	x					
Etat final	\mathcal{X}_{max}					

ETAT TINAI	X_{max}					
🕦 4 . En déduir	re la nature di	ı réactif limitant et	la valeur de l'avand	cement maximal x_{mi}	ax.	
2 Suivi	temporel d	le la synthèse				
	•	•	and Himathand X mand	ا المسمولات		
					ormation sera termi sse et de réaliser au	
:hromatograph	•	•				
≈ A. \						1 .7 15.7
Apres mis e	n commun des	protocoles et accor	a au professeur, i	i syntnese est ianc	ée et le suivi tempor	ei realise
🛚 6. Noter/sc	hématiser les	résultats de votre (expérience et conc	lure sur la durée d	le la transformation.	
₃ 7. Quel est	l'intérêt d'un	montage à reflux po	ur la synthèse ?			
8 . Quel est	le rôle de la p	ierre ponce ?				
🗷 9 . Dans que	l sens doit cir	culer l'eau dans le ré	éfrigérant à eau ?			
		htt	p://lefevre.pc.free.fr			