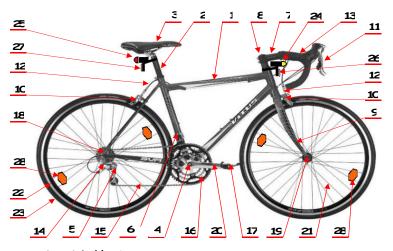
TP 11B

Capacités :


- Distinguer les différentes familles de matériaux présentes dans un dispositif de transport et relier leurs propriétés physico-chimiques à leur utilisation

$\left[egin{array}{c} \mathbf{1} \end{array} ight]$

Les différentes familles de matériaux dans un vélo

Le vélo d'aujourd'hui (même sans être électrique) n'a rien à voir avec celui de 1950. En fabriquant des vélos plus légers, plus maniables et plus confortables (peut-être aussi parfois moins robustes), les constructeurs ont su adapter leurs deux roues aux utilisateurs. Lors de la fabrication, le choix des matériaux est fondamental comme le montre l'exemple ci-dessous. Le tableau répertorie les matériaux constitutifs des principaux organes de deux vélos vendus sous la même enseigne.

		vélo grand public	vélo de course		
	Masse	18 kg	6,4 kg		
	Prix	70 €	1400 €		
	Désignation	Mat	ériau		
1	Cadre	Acier	Aluminium		
2	Tige de selle	Aluminium	Carbone + Aluminium		
3	Selle	Plastique	Carbone		
4	Boîtier pédalier	Acier	Titane + Aluminium		
5	Dérailleur arrière	Acier	Carbone + Aluminium		
6	Dérailleur avant	Acier	Aluminium		
7	Potence	Acier	Carbone		
8	Jeu de direction	Acier	Aluminium		
9	Fourche	Acier	Fibre de carbone		
10	Étrier frein	Aluminium	Aluminium		
11	Poignée (levier de frein)	Plastique	Carbone		
12	Gaine et câble	Plastique + Acier	Plastique + Acier inox		
13	Cintre (guidon)	Aluminium	Aluminium		
14	Cassette pignons	Acier	Acier nickelé		
15	Chaîne	Acier	Acier		
16	Plateau et manivelle	Acier	Aluminium		
17	Pédale	Plastique ou acier	Alliage léger		
18	Moyeu et roue libre arrière	Acier	Aluminium		
19	Moyeu avant	Acier	Aluminium		
20	Manivelle	Aluminium	Carbone composite		
21	Rayons	Acier	Aluminium		
22	Jante	Aluminium	Carbone		
23	Pneumatique	Caoutchouc synthétique	Caoutchouc synthétique		
24 à 27	Système d'éclairage	Plastique	Plastique		

- 🖎 1. Que signifie « acier inox », « acier nickelé » ?
- 2. Les pédales du vélo de course sont constituées d'un « alliage léger ». Rechercher ce que pourrait être cet alliage léger. A quelle propriété physique fait allusion le terme « léger » ? Quel terme aurait été préférable ?
- 3. Classer chaque matériau rencontré en trois catégories : métaux, polymères (ou matériaux organiques) et céramiques (ou matériaux minéraux).

▶ 4. Quelles sont les différences fondamentales entre ces deux vélos en termes de matériaux ? Quels critères ont été favorisés lors de la conception de chacun d'eux ?

Propriété d'un matériau : la dilatation thermique

Le Concorde, avion de ligne supersonique des années 80-90, avait la propriété de s'allonger de 30 à 50 cm pendant son vol à Mach 2. Les frottements de l'air étaient tels que même si la température de l'air était franchement négative (-50 °C au moins), le fuselage de l'avion pouvait atteindre des températures de plus de 120 °C.

- Tobserver l'expérience réalisée au bureau (également en vidéo ci-contre).
- ≥ 5. Expliquer en quoi les variations journalières de température d'un pont peuvent être un réel problème pour les architectes. Quelle solution peut-on envisager ?

http://bit.ly/filALLO

3

Propriété d'un matériau : la densité

- Tobserver à l'œil nu la pièce métallique qui vous a été distribuée.
- ≥ 6. Sans faire aucune mesure particulière et en s'aidant du tableau ci-dessous, à quel métal peut-on penser pour la constitution de cette pièce ?
- 🖎 7. Déterminer, par une méthode que vous expliquerez, la nature du métal qui constitue la pièce.

métal	fer	zinc	aluminium	étain	cuivre	argent	or	plomb
couleur	gris foncé	gris	gris clair	gris brillant	orange	blanc gris	jaune	gris terne
corrosion	rongé facilement (rouille)	ternit	ternit légèrement	taches blanches légères	noircit vert-de-gris	taches noires	même aspect	taches blanches légères
aimant	attraction	aucune attraction						
densité	7,9	7,1	2,7	7,3	8,9	10,5	19,3	11,3

Propriété d'un matériau : l'élasticité

On souhaite effectuer ce qu'on appelle un test de rupture (voir l'exemple en vidéo ci-contre) sur un fil en matériau polymère.

Rappels: (voir activité 11.2)

La **contrainte** est la grandeur $\sigma = \frac{F}{S}$ (en Pa)

La déformation est la grandeur $\varepsilon = \frac{\Delta L}{L_0}$ (sans unité)

avec F la force de traction appliquée (en N)
S la section de la barre (en m²)

avec ΔL est l'allongement de la barre (en m) L_0 la longueur initiale de la barre (en m)

http://bit.lv/testMOU

- 🖎 8. Déterminer la section S du fil en utilisant le diamètre fourni par le fabricant.
- \searrow 9. Réaliser les mesures nécessaires pour compléter le tableau suivant et tracer la caractéristique σ = $f(\varepsilon)$ pour un morceau de fil en polyamide de longueur initiale L_0 = 50 cm.

Pour exercer la forces de traction F, on accrochera au bout du fil suspendu des masses m telles que 0 < m < 1,5 kg.

masse m (en g)	force de traction F (en N)	contrainte σ (en Pa)	longueur L (en mm)	allongement ΔL (en mm)	déformation E
0	0	0	0,50	0	0

- > 10. Sur le graphique, repérer les 2 zones distinctes : domaine de déformation élastique, domaine de déformation plastique. Repérer le point de rupture.
- 🗻 11. Déterminer le module d'élasticité (module de Young) du matériau testé.

<u>Rappels</u>: Dans le domaine élastique, la loi d'élasticité ou **loi de Hooke** s'écrit : $\sigma = E \cdot \epsilon$ où E est le **module de Young** (en Pa), σ la contrainte (en Pa) et ϵ l'allongement relatif ou déformation (sans unité).